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ABSTRACT

Different forms of the theoretical gravity formula are summarized and

methods of standardization of gravity anomalies obtained from satellite gravity

and terrestrial gravity data are discussed in the context of three most commonly

used reference figures, e.g., International Reference Ellipsoid, Reference

Ellipsoid 1967, and Equilibrium Reference Ellipsoid. These methods are im-

portant in the comparison and combination of satellite gravity and gravimetric

data as well as the integration of surface gravity data, collected with different

objectives, in a single reference system. For ready reference, tables for such

reductions are computed. Nature of the satellite gravity anomalies is examined

to aid the geophysical and geodetic interpretation of these anomalies in terms

of the tectonic features of the earth and the structure of the earth's crust and

mantle. Computation of the Potsdam correction from satellite-determined

geopotential is reviewed. The contribution of the satellite gravity results in

decomposing the total observed gravity anomaly into components of geophysical

interest is discussed. Recent work on the possible temporal variations in the

geogravity field is briefly reviewed.
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INTRODUCTION

Analyses of the orbital data of the artificial earth satellites yield geopo-

tential models which are customarily given in the form of spherical harmonic

coefficients of geopotential. These coefficients are related to the more familiar

gravity anomaly A g and the geoidal undulation N as

g (n- 1) (nm Ccos m X +S Sin m) Pn(sin ) (1)

e n= 2 m=O

and

N ae ( +1 ( Cm cos mk + SSnm sin mk) Pnm(in €) (2)

n
= 

2 m=0

where A g is the gravity anomaly, GM the product of the gravitational constant

and mass of the earth, ae the equatorial radius of the earth, (r, €, X) the

spherical coordinates of the computation point, N the geoidal undulation,

Pnm (sin 0) the associated Legendre's functions, and

8Cnm = observed Cnm - reference Cnm

Snm = observed Sm - reference Snm (3)

The factor ae in Equation (2) is a simplification of the factor GM/aey where y

is the average value of gravity over N and is generally approximated by the value

of theoretical gravity at the appropriate point of the reference ellipsoid. The

reference (C, , Sm ) refer to the geopotential coefficients which define the
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reference figure. A customary reference figure is an ellipsoid of revolution.

For such an ellipsoid, because of the supposition of axial symmetry, all

m nm 0 for m # 0. Since such an ellipsoid also has equatorial symmetry,

all the odd zonal harmonics also become zero. Hence, for such a reference

surface, only the even-degree zonal harmonics need be considered. Of these,

the harmonic coefficients of 6th degree or higher are of the order of 10- 9 or

smaller. In a second order theory, this corresponds to terms > 0(f 3) which are

usually neglected. Hence, in practice, such a reference ellipsoid is completely

described by the 2nd and 4th degree zonal harmonics. Consequently, with the

exception of 6 C20 and C4 0 , all Cnm and 6 Snm in equation (3) equal the

observed ones.

A combination of equation (2) and Stokes' formula can be used to compute

detailed gravimetric geoisl height at a point as outlined by Strange and Khan

(1965) and Khan and Strange (1966).

NATURE OF THE SATELLITE-DETERMINED GRAVITY ANOMALIES

An important problem in the understanding and interpretation of satellite-

determined gravity results and their combination with the surface gravity re-

sults is to define which of the well-known surface gravimetric anomaly types

(e.g., free air, Bouguer, isostatic, etc.) most closely equals the satellite-

determined gravity anomaly. The most obvious answer, perhaps, is the free air

anomaly; but since the mean height of most of the satellites used in the gravity

field determinations is several times greater than the depth of compensation,
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one must investigate how different the isostatic gravity anomaly is from the

satellite-derived gravity anomaly. The solution of this problem becomes all the

more important as one must assume one of the several possible isostatic

compensation mechanisms in computing the isostatic reduction and thus, per-

haps, run a greater risk of introducing, rather than removing, spurious factors

in the gravity field.

The problem has been investigated by Jeffreys (1962) and Khan (1972a).

The potential due to the isostatic reduction is found to be

Ui = 4TG 0R S - d(4)

nm + I nm nm rn + 1 L R

where unm Snm is a surface density layer at r = R and d, the depth of

compensation. The appropriate isostatic anomaly potential coefficients based

on a recent geopotential model are given by Khan (1973).

REFERENCE FIGURES AND THEORETICAL GRAVITY

Reference Figures

There are three most commonly used reference systems: (1) International

Reference Ellipsoid with equatorial radius a e = 6,378,388 meters and flattening

f = 1/297.0. Based on this is the International Gravity Formula. (2) Reference

Ellipsoid 1967 with ae = 6,378,160 meters and the second geopotential coefficient

C 2 = -1082.7 x 10-6 corresponding to a flattening f = 1/298.25. These values

are based on the satellite-determined data. Based on this system is the Gravity
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Formula 1967. (3) Equilibrium Reference Ellipsoid with a flattening of 1/299.75

derived from the earth's polar or preferably, mean moment of inertia which in

turn is determined from the ratio of the satellite-determined C 2 and a parameter

H obtained from the precession of the moon. This is the hypothetical flattening

which the earth would have if it were in complete fluid equilibrium.

Theoretical Gravity

Two types of formulas are available for describing gravity on the surface

of a reference ellipsoid: (1) series expansion formulas which must be truncated

to a finite number of terms, their accuracy depending upon the degree of such

truncation; (2) closed formulas which are, of course, exact. It is found that,

in practice, the series expansion formulas need be developed to second order

terms only, i.e., to include quantities of the order of square of the flattening of

the reference ellipsoid being considered. Cook (1957) has developed these

formulas accurate to third order terms but the contribution of these additional

terms is only of the order of 10 - 8 to 10 - 9 .

Series Expansion Formulas: The theoretical or normal gravity y on the

surface of an oblate spheroid, provided it is bounding equipotential, is

' = e [A0 + A2P2 (sin €) + A4 P4 (sin &)] (5)

where

S= normal gravity at the equator and is given by
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GMe 1 - 3C me
a( - 2 

C2  c4 -m (6)
e

P 2 (sin ), P 4 (sin 4) = second and fourth degree Legendre's polynomials,

respectively

1 1 +

A2 2 + 4/32  (7)

55 3 25

13  2m 1+-m +3C 2  +- m)
56 2 7

(8)

=3C2  C2 +M2

In the above expressions, C 2 and C 4 are the second and fourth geopotential co-

efficients, respectively, and are related to the flattening f of the reference

ellipsoid as

C2 2 f+1m+f2 2 mf
3 3 3 21

(9)

C4 4 f2 4 mf
5 7
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with

w 2 a2 b
e

m =-
GM

= rotational velocity

a, b = semi-major and semi-minor axes of the reference ellipsoid

and

GM = the product of the gravitational constant and mass of the earth.

The rotational velocity c is a fixed quantity. Consequently, the selection

of C2 (or the flattening f), ae and either GM or ye, defines the reference system

completely.

A more familiar form of the theoretical gravity formula, or what is also

known as the standard gravity formula, is

y= e [1 + a2 sin2 q + a4 sin2 25]. (10)

which is obtained from equation (5) by the substitution

P2 (Sin =1 (3 s in 2 - 1)

(11)

P4(sin ) (35 sin4 - 30 sin2  + 3).
8

The coefficients a2 and a4 in this case are
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2 = P1 + #2

(12)

4 2

It is again seen from equations (6), (8), (10) and (12) that a knowledge of w,

GM, ae and f, or w, ye , a, and f, defines the standard gravity completely.

Closed formulas: The normal gravity y is given on the surface of an

ellipsoid by the exact closed formula (Heiskenan and Moritz, 1967):

aYe COS2 + by sin 2  (

Y= (13)

[a2 cos 2 4 + b2 sin 2 0] 1/2

where

b = ae(1 - f)

equatorial gravity e y b - m -- e'
ab 6 q0

e

lm (14,

polar gravity 2 -3
er e

b
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qo =  1 + 3 L)tan- E 3 (15)

2 E 2, b E]

and

E= ra2- b2

Numerical Gravity Formulas: With the adopted geometric parameters of

the International Reference Ellipsoid and e = 978,049.0 milligals, w = 0.72,921,

151.10 - 4 sec- 1 , equations (8), (10) and (12) yield the International Gravity

Formula, i.e.,

y = 978 049.0 [1 + 0.0 052 883 sin2 - 0.0 000 059 sin2 24] mgals (16)

The value of ye in this formula is an adopted quantity, obtained from the gravi-

metric measurements and is tied to the Potsdam system. GM in this case is

derived from adopted ye and a e

The satellite determined 'Geodetic Reference System 1967' has the adopted

parameters

ae = 6, 378, 160.0 meter

C,= - 1082.7 x 10-6 (Reference Ellipsoid 1967)

GM = 3.98, 603 x 1020 cm3 sec- 2

8



The corresponding flattening f = 1/298.25 from equation (9) and 7e = 978.0318

x 103 milligals from equation (6). The resulting 'Gravity Formula 1967' is

y= 978.0318 [1 + 0.0 053 024 sin2  - 0.0 000 058 sin2 2]1 x 103 mgals (17)

Here ye is independent of the Potsdam Gravity System. The value of C4 used in

equation (6) is not the satellite-derived value for the actual earth but the

theoretical value expected from the value of C 2 (equation 9).

STANDARDIZATION OF THE GRAVITY ANOMALIES

It frequently happens that the gravity anomalies computed on two different

reference systems need be integrated or compared or, the gravity data obtained

from two independent techniques of measurements need be compared and com-

bined. For example, the terrestrial gravity data are usually tied to the Potsdam

Gravity System and the anomalies are usually computed on the basis of

International Gravity Formula or equivalently, referred to the International Ref-

erence Ellipsoid. The satellite gravity results are independent of the Potsdam

System and are usually referred to the 'Reference Ellipsoid 1967' (Geodetic

Reference System 1967) or equivalently, to the 'Gravity Formula 1967'. For

the geophysical analysis of the crust and mantle from gravity anomalies on the

other hand, the best reference figure is regarded to be the Equilibrium Refer-

ence Ellipsoid (Khan and O'Keefe, in press). Hence, it is important to consider

the conversion from one reference to the other and to compute tables to serve

as ready reference for such conversions.
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Let

0  yPpgI - gp - Ip
(18)

AgS = go - = (go - d) - s

A g is the gravity anomaly, gO the observed gravity and y the theoretical

gravity. The superscripts S and I refer to the Gravity Formula 1967 and Inter-

national Gravity Formula, respectively and subscript P to the Potsdam System.

It is clear that go and Iare related to the Potsdam System while gO and ys are

independent of it. Also, go gO + d where d is the datum shift correction i.e.,

the quantity by which the Potsdam Gravity System is in error.

Equation (18) gives

AgS= Ag I - d + - s  (19)

or

Ag' = gs + d + yS - -y

From equation (10), yp and 7 s are

Sy I' [1 + al sin2  + a sin2 2A (20)

P e 2 4

and

s ys [1 + as sin 2  S + a~ sin 2 2¢]

10



Let

I1 = S r

a as + 8a2 (21)

aJ = as + a4

Then

,I - s =e 8[ + as sin2 4 + as sin2 2]- + I [8 a 2 sin2 +

(22)

8a4 sin2 2( ]= 87 + 8e2

where the first three terms are denoted by 8y and the last two by 6 e 2 . Since

Y7 is tied to the Potsdam system while ys is independent of it, the quantity 8 y

contains the datum shift correction d, i.e.,

8-/= e I + d

Hence

AgS = AgI + 8e + e2 = 8gI + Se

or (23)

Ag' = Ags - 8e

11



The correction ae1 accounts for the difference in the equatorial gravity values

of the two formulas under consideration, corrected for the Potsdam datum shift.

This correction obviously arises from changes in the value of GM and equatorial

radius a of the reference ellipsoid. The quantity 8e 2 stems primarily from

changes in the flattening of the reference ellipsoid.

In satellite-derived gravity anomalies, it is more convenient to work with

spherical harmonics and hence to incorporate the above corrections in terms of

the coefficients of these harmonics. In this case the correction 8 e to the order

of accuracy required here, is given as

- 8e = GM [CP2(sin ) + 38C4P4 (Sin ) (24)
a

2
e

where allowance has bee; made for the fact that the point to which the correction

refers to on the spheroid is shifted to the geoid because of the disturbing

masses, i.e., as the correction is to be applied to the gravity anomalies, the

Bruns' term has been taken into consideration. In equation (24), 8 C2 and 8 C4

are the differences between the second and fourth spherical harmonic coefficients

of the satellite-determined ellipsoid and the International Reference Ellipsoid,

respectively. Since none of the parameters in equation (24) is derived from the

terrestrial gravity data (which are tied to the Potsdam System), the correction

is independent of the Potsdam System and is equal to 8 e to which the datum

shift correction d has already been applied (with due regard to the sign, of course).
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For formulas relating to the Equilibrium Reference Ellipsoid, the above

development must be followed closely with appropriate change of superscript.

The customary way to allow for the correction term due to equation (24)

while computing the satellite-determined A g with respect to the preferred refer-

ence ellipsoid has already been described in equations (1) and (3).

The correction factors for the interconversions of the various reference

ellipsoids are computed using equation (24), or equation (22) with allowance for

the correction d, or equation (13) for the closed formulas, are listed in Table 1

for each 1' latitude. The number of decimal places should not be regarded as

indicating the degree of accuracy and the numbers should be rounded to first

place after decimal in applying the correction. For any fractional degrees,

the values can be safely interpolated linearly.

Correction to the Potsdam Absolute Gravity Value

As noted before, the Potsdam System affects equation (22) through ye

(equation 20) which is derived from terrestrial gravity data tied to the Potsdam

System. From equations (22) and (23)

(y - 7 s) = d + 8e

None of the parameters used in equation (24) is tied to the Potsdam System.

Hence, the correction given by this equation is independent of this system. The

difference of the corrections obtained from equations (22) and (24), therefore,

should give an estimate of the value by which the Potsdam gravity value is

in error, i.e.,

13



d (yI- yS) e (25)

The datum shift correction d is computed from equation (25) via equations (22)

and (26), using the standard parameters of the International Gravity Formula

and the 'Geodetic Reference System 1967.' The results of this analysis are

published in Khan (1972b).

REMOVAL OF THE REGIONAL GRAVITY EFFECT

In the process of geophysical interpretation of a gravity anomaly it is often

necessary to split the anomaly in the part which stems from sources of local

extent and the part which is contributed by the regional sources. Several methods

have been devised to estimate the regional gravity effect (the areal extent of the

local and regional sources being defined arbitrarily in a given problem) but per-

haps the most commonly used is the graphical method in which the regional part

of the gravity anomaly is usually estimated by the general trend of the gravity

anomaly curve. Such a method has its obvious limitations. The satellite

determinations of the long wavelength components of the gravity field provide us

with a relatively more objective and reliable method of estimating the regional

effect. Let ngt be the total anomaly and A g and A g its local and regional

components, respectively, i.e.,

Ag e g t - gr (26)
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Where

n n+2

Agr T (n - 1) (SC, cos nk + 8Sn. s in mi) P l(sin )

e n=2 m

N is the number of harmonic degree to which the regional effect is desired to

be computed and is arbitrarily determined by the requirements of the specific

problem. The other symbols in the above equation are the same as in equations

(1), (2) and (3).

Once 6 ge is isolated and explained in terms of known or possible local and

perhaps shallow-seated sources, A gr can then be computed more accurately and

assigned to broad and perhaps relatively more deep seated anomalous sources.

The removal of the regional effect in equation (26) is, in fact, equivalent to

an arbitrary extension of the definition of normal potential, i.e., instead of adopt-

ing a simple ellipsoid of revolution as the reference figure, one chooses to

select a more complicated geoidal surface as the reference figure which must

be defined to a higher harmonic degree. The implication of this equivalence in

terms of equation (26) is that Age can be directly written as:

GM(a n+2
Age (n - 1) (C cos mX + Snm sin mX) Pn(sin ) (27)

e n=N m=0

with Cnm and Snm replacing 6 Cnm and 6Snm of equation (1) and N defined as

above. Note that equation (27) is just another statement of equation (26).

15



The techniques provided by equation (26) or (27) can be very useful in the

investigation of interrelationships of gravity with elevation, heat flow, seismic

data, tectonic activity zones or various geological provinces, etc.

SECULAR VARIABILITY OF THE GEOGRAVITY FIELD

It has long been speculated that earth's gravity field shows secular varia-

tions. Various methods have been applied to investigate such variations. Some

involve the graphical techniques (Tuman, 1966) while others involve the use of

geophysical evidence such as seismic reflections from the core-mantle boundary,

stationary and displaced correlations of the earth's gravity and magnetic fields

(Vogel, 1960, 1968; Egyed, 1964; Hide, 1970; Khan, 1970, 1971) as well as the

tidal records (Khan, 1971). Evidence to date is inconclusive at best. Khan (in

prep.) has suggested that such variations can be traced by comparing the satel-

lite-determined models of the gravity field as a function of time. If a t , b t be

the geopotential harmonic coefficients of the gravity field at the present time

t and ao, bo the coefficients of the gravity field in the past at t = 0, then the

comparison of the two sets of coefficients will yield the drift angle between the

two versions of the field over time t. If the drift angles computed for different

harmonic degrees are randomly distributed, there is no reason to believe that

the gravity field has any secular or long period variations. If, however, these

drift angles show a preference for a single-cluster distribution, the assumption

of secular or long-period variation in the field is supported. The available

geopotential models have been analyzed with the help of this method and

16



screened through the significance tests adopted from the theory of circular

distributions. The investigations to date (Khan, in prep.) indicate no evidence

of any systematic secular or long-period variations in the earth's gravity field.

Such investigations are possible, of course, because of the global coverage, and

perhaps the accuracy, furnished by the satellite-determined gravity results.

17



BIBLIOGRAPHY

Cook, A. H., The external gravity field of a rotating spheroid to the order of e 3 ,

Geophys. Jour. Royal Astronom. Soc. London, 2, 3, 211, 1959.

Egyed, L., The satellite geoid and the structure of the earth, Nature, 203, 67,

1964.

Hide, R., and S. R. C. Malin, Novel correlations between global features of the

earth's gravitational and magnetic fields, Nature, 225, 605, 1970.

Heiskenan, W. A. and H. Moritz, Physical Geodesy, W. H. Freeman and Company,

1967.

Jeffreys, H., The earth, Cambridge Univ. Press, 1962.

Kaula, W. M., Earth's gravity field: relation to global tectonics, Science, 1969,

3949, 982, 1970.

Khan, M. A., Geophysical implications of the interrelationships of the geogravity

anC geomagnetic fields, Nature, 226, 5243, 340, 1970.

Khan, M. A., Potsdam correction from satellite-determined geopotential,

Nature Physical Sciences, .239, pp. 43-45, 1972.

Khan, M. A., Some geophysical implications of the satellite-determined geo-

gravity field, Geophys. Jour., Royal Astronom. Soc., London, 23, 15-43,

1971.

Khan, M. A., Westward drift and other secular variations of the geogravity

field, in prep.

18



Khan, M. A. and J. A. O'Keefe, Recommended reference figures for geophysics

and geodesy, J. Geophys. Res. (in press).

Khan, M. A. and W. M. Strange, Investigations on the shape of geoid in North

America, Trans. Amer. Geophys Un. 47, 1, 1966.

Strange, W. M. and M. A. Khan, The prediction of gravity in unsurveyed areas

using a combination of satellite and surface gravity data, Trans. Am.

Geophys. U., 46, 3, 1965.

Tuman, V. S., The satellite geoid may have a westward drift, Nature, 210, 5038,

826, 1966.

Uotila, U. A., Gravity anomalies for a mathematical model of the earth, Iso-

static Inst. of the Int. Union of Geodesy Pub. No. 43, 1964.

Vogel, A., Ueber Unregelmassigkeiten der ausseren Begrenzung des Erdkerns

auf Grund von am Erdkern reflektierten Erdbebenwellen, Gerlands Beitr.

Geophys., 69, 150, 1960.

Vogel, A., The question of secular variations in the earth's gravity field from

mass displacements in the earth's deep interior, Bull. G6odes. No. 88,

223, 1968.

19



Table 1. Corrections in Milligals for the Interconversion of the

International, 1967 and Equilibrium Reference Ellipsoids

Latitude (Degrees) (1) (2) (3)

90.00 9.10 -9.00 -18.11

89.00 9.10 -9.00 -18.10

88.00 9.09 -. 899 -18.07

87.00 9.07 -. 897 -18.03

86.00 9.04 -8.94 -17.97

85.00 9.00 -8.90 -17.90

84.00 8.95 -8.86 -17.81

83.00 8.90 -8.80 -17.71

82.00 8.84 -8.74 -17.59

8? 00 8.77 -8.68 -17.45

80.00 8.70 -8.60 -. 17.30

79.00 8.61 -8.52 -17.13

78.00 8.52 -8.43 -16.94

77.00 8.42 -8.33 -16.75

76.00 8.31 -8.22 -16.53

75.00 8.20 -8.11 -16.31

74.00 8.08 -7.99 -16.06

73.00 7.95 -7.86 -15.81

72.00 7.81 -7.73 -15.54
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Table 1. (continued)

Latitude (Degrees) (1) (2) (3)

71.00 7.67 -7.58 -15.26

70.00 7.52 -7.44 -14.96

69.00 7.37 -7.28 -14.65

68.00 7.21 -7.12 -14.33

67.00 7.04 -6.96 -14.00

66.00 6.87 -6.79 -13.65

65.00 6.69 -6.61 -13.30

64.00 6.50 -6.43 -12.93

63.00 6.31 -6.24 -12.56

62.00 6.12 -6.05 -12.17

61.00 5.92 -5.85 -11.77

60.00 5.72 -5.65 -11.37

59.00 5.51 -5.45 -10.96

58.00 5.30 -5.24 -10.54

57.00 5.08 -5.02 -10.11

56.00 4.87 -4.81 - 9.67

55.00 4.64 -4.59 - 9.23

54.00 4.42 -4.37 - 8.79

53.00 4.19 -4.14 - 8.33

52.00 3.96 -3.91 - 7.87
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Table 1. (continued)

Latitude (Degrees) (1) (2) (3)

51.00 3.73 -3.68 - 7.41

50.00 3.50 -3.45 - 6.95

49.00 3.26 -3.22 - 6.48

48.00 3.02 -2.99 - 6.01

47.00 2.79 -2.75 - 5.54

46.00 2.55 -2.51 - 5.06

45.00 2.31 -2.28 - 4.59

44.00 2.07 -2.04 - 4.11

43.00 1.83 -1.81 - 3.64

42.00 1.59 -1.57 - 3.16

41.(l 1.35 -1.33 - 2.69

40.00 1.12 -1.10 - 2.22

39.00 0.88 -0.87 - 1.75

38.00 0.65 -0.64 - 1.29

37.00 0.42 -0.41 - 0.82

36.00 0.19 -0.18 - 0.37

35.00 -0.04 0.04 0.08

34.00 -0.27 0.26 0.53

33.00 -0.49 0.48 0.97

32.00 -0.70 0.70 1.40
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Table 1. (continued)

Latitude (Degrees) (1) (2) (3)

31.00 -0.92 0.91 1.83

30.00 -1.13 1.12 2.25

29.00 -1.34 1.32 2.66

28.00 -1.54 1.52 3.06

27.00 -1.74 1.72 3.45

26.00 -1.93 1.91 3.84

25.00 -2.12 2.09 4.21

24.00 -2.30 2.27 4.57

23.00 -2.48 2.45 4.92

22.00 -2.65 2.62 5.26

21.00 -2.81 2.78 5.59

20.00 -2.97 2.94 5.90

19.00 -3.12 3.09 6.21

18.00 -3.27 3.23 6.50

17.00 -3.41 3.37 6.77

16.00 -3.54 3.50 7.03

15.00 -3.66 3.62 7.28

14.00 -3.78 3.74 7.52

13.00 -. 389 3.84 7.73

12.00 -3.99 3.95 7.94
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Table 1. (concluded)

Latitude (Degrees) (1) (2) (3)

11.00 -4.09 4.04 8.13

10.00 -4.18 4.12 8.30

9.00 -4.25 4.20 8.46

8.00 -4.32 4.27 8.60

7.00 -4.39 4.33 8.72

6.00 -4.44 4.39 8.83

5.00 -4.49 4.43 8.92

4.00 -4.53 4.47 9.00

3.00 -4.56 4.50 9.06

2.00 -4.58 4.52 9.10

1.00 -4.59 4.53 9.12

0.0 -4.59 4.54 9.13

Column (1): For change from the "Reference Ellipsoid
1967" to the International Reference

Ellipsoid, add the correction to the gravity

anomaly. For reverse operation subtract

the correction.

Column (2): For change from the "Reference Ellipsoid

1967" to the Equilibrium Reference
Ellipsoid, add the correction to the gravity

anomaly. For reverse operation subtract
the correction.

Column (3): For change from the International Reference

Ellipsoid to the Equilibrium Reference Ellip-

soid, add the correction to the gravity
anomaly. For reverse operation subtract the

correction.

24 NASA-GSFC


